Mark Scheme (Results)

January 2021

Pearson Edexcel International Advanced Level In Physics (WPH15/01)
Paper 5: Thermodynamics, Radiation, Oscillations and Cosmology

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2021
Publications Code WPH15_01_2101_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question Number	Answer	Mark
1	D is the correct answer A is not the correct answer, as the mean velocity of the oxygen molecules and the mean velocity of the nitrogen molecules are both zero. B is not the correct answer, as the mean speed of the oxygen molecules is less than the mean speed of the nitrogen molecules. C is not the correct answer, as the mean kinetic energy of any molecule is determined by the temperature of the gas.	(1)
2	B is the correct answer A is not the correct answer, as dark matter neither absorbs not emits electromagnetic radiation. C is not the correct answer, as we can detect dark matter as a result of the gravitational force it exerts. D is not the correct answer, as we cannot say what dark matter is.	(1)
3	B is the correct answer A is not the correct answer, as α-particles are highly ionising. C is not the correct answer, as γ-radiation is weakly ionising. D is not the correct answer, as γ-radiation is very penetrating.	(1)
4	B is the correct answer A is not the correct answer, as, λ max increases as the metal bar cools. C is not the correct answer, as λ max decreases as the metal bar is heated. D is not the correct answer, as λ max decreases as the metal bar is heated.	(1)
5	C is the correct answer, as the amplitude of oscillation is proportional to the square root of the energy of the oscillation.	(1)
6	C is the correct answer, as $I=1 / 4 \pi d^{2}$	(1)
7	B is the correct answer A is not the correct answer, as the weight is only zero at an infinite distance. C is not the correct answer, as this is the weight somewhere between the orbit height and the Earth's surface. D is not the correct answer, as this is the weight at the Earth's surface.	(1)
8	C is the correct answer, as $L=4 \pi^{2} \sigma T^{4}$	(1)
9	A is the correct answer, as acceleration and displacement must be in antiphase.	(1)
10	\mathbf{C} is the correct answer, as the acceleration graph is equal to the gradient of the velocity graph.	(1)

Question Number	Answer		Mark
11	Use of $g=\frac{G M}{r^{2}}$ $R_{\mathrm{m}}=3.4 \times 10^{6} \mathrm{~m}$ Example of calculation $\begin{aligned} & g=\frac{G M}{r^{2}} \therefore r=\sqrt{\frac{G M}{g}} \\ & \frac{R_{\mathrm{m}}}{R_{\mathrm{E}}}=\sqrt{\frac{M_{\mathrm{m}}}{M_{\mathrm{E}}} \times \frac{g_{\mathrm{E}}}{g_{\mathrm{m}}}} \\ & \therefore R_{\mathrm{m}}=6.37 \times 10^{6} \mathrm{~m} \times \sqrt{\frac{1}{9.3} \times 2.6}=3.37 \times 10^{6} \mathrm{~m} \end{aligned}$	(1) (1)	2
	Total for question 11		2

Question Number	Answer	Mark
12(a)	Use of $P=\frac{\Delta E}{\Delta t}$ Use of $\Delta E=m c \Delta \theta$ $t=216(\mathrm{~s})$ Example of calculation $\begin{aligned} & P \Delta t=m c \Delta \theta \\ & \therefore t=\frac{0.165 \mathrm{~kg} \times 4190 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1} \times(100-12.5) \mathrm{K}}{280 \mathrm{~W}}=216 \mathrm{~s} \end{aligned}$	(3)
12(b)	Use of $\Delta \mathrm{E}$ from (a) Or use of $P=\frac{\Delta E}{\Delta t}$ using value for $\Delta \mathrm{t}$ from (a) Or use of $\Delta E=m c \Delta \theta$ with $\Delta \theta=(100-87.7)$ Use of $\Delta E=m c \Delta \theta$ and $\Delta E=m L$ $\begin{equation*} m=3.7 \times 10^{-3} \mathrm{~kg} \text { (allow ecf from (a) } \tag{1} \end{equation*}$ Example of calculation	(3)
	Total for Question 12	6

Question Number	Answer		Mark
13(a)	$\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$	(1)	(1)
13(b)(i)	Use of $T=2 \pi \sqrt{\frac{\ell}{g}}$ $\ell=0.99 \mathrm{~m}$ Example of calculation $\begin{aligned} & 2.000 \mathrm{~s}=2 \pi \sqrt{\frac{\ell}{9.81 \mathrm{~m} \mathrm{~s}^{-2}}} \\ & \therefore \ell=9.81 \mathrm{~m} \mathrm{~s}^{-2} \times\left(\frac{2 \mathrm{~s}}{2 \pi}\right)^{2}=0.994 \mathrm{~m} \end{aligned}$	(1) (1)	(2)
13(b)(ii)	g varies depending upon location Or the metre would depend upon an accurate measurement of time Or the metre would depend upon the definition of the second		(1)
	Total for Question 13		4

Question Number	Answer	Mark
14(a)	Use of $p V=N k T$ Conversion of temperature to kelvin $\begin{equation*} p=5.1 \times 10^{5} \mathrm{~Pa} \tag{1} \end{equation*}$ Example of calculation $p=\frac{7.5 \times 10^{24} \times 1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \times(273+20) \mathrm{K}}{6.0 \times 10^{-2} \mathrm{~m}^{3}}=5.05 \times 10^{5} \mathrm{~Pa}$	(3)
14(b)	Use of $p V=N k T$ with 288 K $\begin{equation*} \text { Percentage remaining }=91(\%) \tag{1} \end{equation*}$ Example of calculation $\begin{aligned} & N=\frac{4.5 \times 10^{5} \mathrm{~Pa} \times 6.0 \times 10^{-2} \mathrm{~m}^{3}}{1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \times 288 \mathrm{~K}}=6.79 \times 10^{24} \\ & \text { Percentage remaining }=\frac{6.8 \times 10^{24}}{7.5 \times 10^{24}} \times 100 \%=90.5 \% \end{aligned}$	(2)
	Total for Question 14	5

Question Number	Answer		Mark
15	Log expansion of $R=R_{0} e^{-\mu x}$ μ identified as (-) gradient Gradient calculated Use of $R=R_{0} e^{-\mu x}$ Or use $x_{1 / 2}=\frac{\ln 2}{\mu}$ Half-value thickness $=1.5 \mathrm{~cm}$ Conclusion consistent with half-value thickness OR Log expansion of $R=R_{0} e^{-\mu x}$ $\ln R_{0}$ identified as intercept Intercept read from graph $R_{0} / 2$ calculated and x read from graph Half-value thickness $=1.5 \mathrm{~cm}$ Conclusion consistent with half-value thickness Example of calculation $\ln R=\ln R_{0}-\mu x$ $\begin{aligned} & \mu=-\left(\frac{5.20-6.85}{3.5 \mathrm{~cm}^{2}}\right)=0.471 \mathrm{~cm}^{-1} \\ & \frac{R_{0}}{2}=R_{0} e^{-0.471 \mathrm{~cm}^{-1} x} \\ & \therefore \ln 2=0.471 \mathrm{~cm}^{-1} x \\ & \therefore x=1.47 \mathrm{~cm} \end{aligned}$	(1) (1)	(6)
	Total for Question 15		6

Question Number	Answer		Mark
16(a)(i)	Redshift is the (fractional) increase in the wavelength received Due to the source of radiation moving away from the observer [Accept answers in terms of frequency]	(1) (1)	(2)
16(a)(ii)	Use of $z=\frac{v}{c}$ Use of $v=H_{0} d$ $d=2.9 \times 10^{24} \mathrm{~m}$ Example of calculation $\begin{aligned} & v=0.0158 \times 3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}=4.74 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1} \\ & d=\frac{4.74 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}}{1.62 \times 10^{-18} \mathrm{~s}^{-1}}=2.93 \times 10^{24} \mathrm{~m} \end{aligned}$	(1) (1) (1)	(3)
16(b)	The force between the galaxies obeys the inverse square law Or $F=\frac{G m_{1} m_{2}}{r^{2}}$ Or $F \propto \frac{1}{r^{2}}$ $F=m a$, so as the (resultant) force increases, so does the acceleration	(1) (1)	(2)
	Total for Question 16		7

\begin{tabular}{|c|c|c|c|}
\hline Question Number \& Answer \& \& Mark \\
\hline 17(a)(i) \& \begin{tabular}{l}
Equate \(F=\frac{G M m}{r^{2}}\) with \(F=m \omega^{2} r\) \\
Use of \(\omega=\frac{2 \pi}{T}\) to calculate \(T\) \\
Use of \(n=\frac{8.64 \times 10^{4} \mathrm{~s}}{T}\) to calculate number of orbits in 1 day \\
In 1 day Salyut 1 would make 16.3 orbits, and so the claim is correct. \\
OR \\
Equate \(F=\frac{G M m}{r^{2}}\) with \(F=m \omega^{2} r\) \\
Use of \(\omega=\frac{2 \pi}{T}\) \\
Use of \(T=\frac{8.64 \times 10^{4} \mathrm{~s}}{16}\) to calculate orbital time if 16 orbits in 1 day \(5310 \mathrm{~s}<5400 \mathrm{~s}\) and so the claim is correct. \\
OR \\
Equate \(F=\frac{G M m}{r^{2}}\) with \(F=m \omega^{2} r\) \\
Use of \(\omega=\frac{2 \pi}{T}\) to calculate \(T\) \\
Use their value of T to calculate time \(t\) for 16 orbits \\
If \(t<8.64 \times 10^{4} \mathrm{~s}\), then claim is correct. \\
Accept use of \(F=\frac{G M m}{r^{2}}\) with \(F=\frac{m v^{2}}{r}\) for MP1 and use of \(v=\frac{2 \pi r}{T}\) for MP2. \\
Example of calculation
\[
\begin{aligned}
\& m \omega^{2} r=\frac{G M m}{r^{2}} \\
\& \therefore \omega^{2}=\frac{G M}{r^{3}} \therefore \omega=\sqrt{\frac{6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2} \times 5.98 \times 10^{24} \mathrm{~kg}}{\left(6.37 \times 10^{6} \mathrm{~m}+2.11 \times 10^{5} \mathrm{~m}\right)^{3}}} \\
\& \therefore \omega=1.183 \times 10^{-3} \mathrm{rad} \mathrm{~s}^{-1} \\
\& \therefore T=\frac{2 \pi}{\omega}=\frac{2 \pi \mathrm{rad}^{1.183 \times 10^{-3} \mathrm{rad} \mathrm{~s}^{-1}}=5311 \mathrm{~s}}{\therefore T}
\end{aligned}
\] \\
Number of orbits \(=\frac{8.64 \times 10^{4} \mathrm{~s}}{5310 \mathrm{~s}}=16.3\) \\
If 16 sunrises per day, \(T=\frac{8.64 \times 10^{4} \mathrm{~s}}{16}=5400 \mathrm{~s}\)
\end{tabular} \& (1)
\((1)\)
\((1)\)
\((1)\)

(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1) \& (4)

\hline
\end{tabular}

17(a)(ii)	Use of $V_{\text {grav }}=-\frac{G M}{r}$ Recognises that $\Delta E_{\text {grav }}=m \times \Delta V_{\text {grav }}$ $\Delta E_{\text {grav }}=(-) 3.7 \times 10^{10} \mathrm{~J}$ Example of calculation $\begin{aligned} & \Delta V_{\text {grav }}=-\frac{G M}{r_{2}}+\frac{G M}{r_{1}} \\ & \Delta V_{\text {grav }}=G M\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) \\ & \Delta V_{\text {grav }}=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \times 5.98 \times 10^{24} \mathrm{~kg}\left(\frac{1}{6.58 \times 10^{6} \mathrm{~m}}-\frac{1}{6.37 \times 10^{6} \mathrm{~m}}\right) \\ & \therefore \Delta V_{\text {grav }}=-2.00 \times 10^{6} \mathrm{~J} \mathrm{~kg}^{-1} \\ & \therefore \Delta E_{\text {grav }}=-2.00 \times 10^{6} \mathrm{~J} \mathrm{~kg}^{-2} \times 18400 \mathrm{~kg}=-3.67 \times 10^{10} \mathrm{~J} \end{aligned}$	(1) (1) (1)	(3)
17(b)	A (large) drag force acted on the satellite Work is done on satellite (by drag force) and temperature of satellite increases OR Air in front of satellite is compressed Energy is transferred to satellite (from hot air) and temperature of satellite increases MP2 dependent upon MP1	(1) (1) (1) (1)	(2)
	Total for Question 17		9

Question Number	Answer		Mark
18(a)	(For simple harmonic motion the) acceleration is: - (directly) proportional to displacement from equilibrium position - acceleration is in the opposite direction to displacement Or (always) acting towards the equilibrium position OR (For simple harmonic motion the resultant) force is: - (directly) proportional to displacement from equilibrium position - force is in the opposite direction to displacement Or (always) acting towards the equilibrium position	(1) (1) (1) (1)	(2)
18(b)(i)	Use of $\omega=2 \pi f$ Use of $v=A \omega \sin \omega t$ with $\sin \omega t=1$ $A=1.49 \times 10^{-3}(\mathrm{~m})$ Example of calculation $\begin{aligned} & \omega=2 \pi \times 240 \mathrm{~Hz}=1508 \mathrm{rad} \mathrm{~s}^{-1} \\ & A=\frac{2.25 \mathrm{~m} \mathrm{~s}^{-1}}{1508 \mathrm{rad} \mathrm{~s}^{-1}}=1.49 \times 10^{-3} \mathrm{~m} \end{aligned}$	(1) (1) (1)	(3)
18(b)(ii)	Use of $a=-\omega^{2} x$ $a=(-) 3390 \mathrm{~m} \mathrm{~s}^{-2}(\text { Allow ecf from }(\mathrm{b})(\mathrm{i}))$ Example of calculation $a=-\left(1508 \mathrm{rad} \mathrm{~s}^{-1}\right)^{2} \times 1.49 \times 10^{-3} \mathrm{~m}=3388 \mathrm{~m} \mathrm{~s}^{-2}$	(1) (1)	(2)
18(c)(i)	Material returns to its original shape (and size) once (deforming) force removed	(1)	(1)
18(c)(ii)	An oscillating system is driven/forced at its natural frequency There is a maximum transfer of energy Resulting in an increasing/maximum amplitude of oscillation	(1) (1) (1)	(3)
18(c)(iii)	Max 2: The frequency of oscillation of the wings is a multiple of the muscle frequency Impulses are always applied at the same point in the cycle (of the wing's oscillation) So there will still be an efficient transfer of energy from the muscles to the wings [dependent upon either MP1 or MP2]	(1) (1) (1)	(2)
	Total for Question 18		13

Question Number	Answer	Mark
19(a)(i)	Top line correct Bottom line correct Example of calculation $\begin{equation*} { }_{19}^{40} \mathrm{~K} \rightarrow{ }_{20}^{40} \mathrm{Ca}+{ }_{-1}^{0} \beta^{-}+{ }_{0}^{0} \bar{v}_{\mathrm{e}} \tag{1} \end{equation*}$	(2)
19(a)(ii)	Calculation of mass difference Conversion from u to kg Use of $\Delta E=c^{2} \Delta m$ Use of 1.6×10^{-19} to convert energy to eV $\begin{equation*} \Delta E=0.80(\mathrm{MeV}) \tag{1} \end{equation*}$ Example of calculation: $\text { Mass difference }=39.963998 u-39.962591 u-0.00054858 u=8.584 \times 10^{-4} u$ $\text { Mass difference }=8.584 \times 10^{-4} \mathrm{u} \times 1.66 \times 10^{-27} \mathrm{~kg} \mathrm{u}^{-1}=1.425 \times 10^{-30} \mathrm{~kg}$ $\begin{aligned} & \Delta E=c^{2} \Delta m=\left(3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right)^{2} \times 1.425 \times 10^{-30} \mathrm{~kg}=1.282 \times 10^{-13} \mathrm{~J} \\ & \Delta E=\frac{1.282 \times 10^{-13} \mathrm{~J}}{1.60 \times 10^{-13} \mathrm{~J} \mathrm{MeV}^{-1}}=0.802 \mathrm{MeV} \end{aligned}$	(5)
19(a)(iii)	Momentum/KE is given to 3 particles in the decay Or (KE of Ca is negligible so) KE for the beta-neutrino pair was constant The energy split between the beta particle and the neutrino is random Or the momentum of the emitted beta particle varies Or The (anti) neutrino energy varies	(2)

19(b)(i)	Use of $\lambda=\frac{\ln 2}{t_{1 / 2}}$ Use of $\frac{\Delta N}{\Delta t}=(-) \lambda N$ $A=1.94 \times 10^{5}(\mathrm{~Bq})$ Example of calculation: $\begin{aligned} & \lambda=\frac{\ln 2}{t_{1 / 2}}=\frac{0.693}{1.25 \times 10^{9} \times 3.15 \times 10^{7} \mathrm{~s}}=1.76 \times 10^{-17} \mathrm{~s}^{-1} \\ & \frac{\Delta N}{\Delta t}=\lambda N=1.76 \times 10^{-17} \mathrm{~s}^{-1} \times 1.10 \times 10^{22}=1.94 \times 10^{5} \mathrm{~Bq} \end{aligned}$	(1) (1) (1)	(3)
19(b)(ii)	Use of $A=A_{0} e^{-\lambda t}$ $t=8.6 \times 10^{7}$ years, so claim is false. Or Activity after 50 years $=1.94 \times 10^{5} \mathrm{~Bq}$ so claim is false (valid calculation needed) (ecf activity from (i)) Example of calculation $\begin{aligned} & 1.85 \times 10^{5}=1.94 \times 10^{5} e^{-1.76 \times 10^{-17} t} \\ & -1.76 \times 10^{-17} \mathrm{~s}^{-1} \times t=\ln \left(\frac{1.85 \times 10^{5} \mathrm{~Bq}}{1.94 \times 10^{5} \mathrm{~Bq}}\right) \\ & t=\frac{-0.0475}{-1.76 \times 10^{-17}}=2.70 \times 10^{15} \mathrm{~s}=8.57 \times 10^{7} \text { years } \end{aligned}$	(1) (1)	(2)
	Total for question 19		14

20(b)(i)	λ value read from graph	(1)
	Use of $\frac{\Delta \lambda}{\lambda}=\frac{v}{c}$ for either spectral line	(1)
$v=(-) 3.05 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$	(1)	
Andromeda is moving towards the Earth		
	Example of calculation $\frac{393.0 \mathrm{~nm}-393.4 \mathrm{~nm}}{393.4 \mathrm{~nm}}=\frac{v}{3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}}$ $\therefore v=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \times\left(\frac{-0.4 \mathrm{~nm}}{393.4 \mathrm{~nm}}\right)=-3.05 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$	(4)
20(b)(ii)	A layer of dust around the candle would reduce the intensity Intensity obeys an inverse square law Or $I=\frac{L}{4 \pi d^{2}}$ (symbol I or L defined) A smaller value of intensity would lead to larger (calculated) distance, so claim is valid	(1)

